Contrail Evolution¶
The /trajectory/cocip-contrail endpoint (added in version 0.8.0) disseminates intermediate contrail evolution data according to the CoCiP model.
Unlike the /trajectory/cocip
endpoint, which predicts contrail impact per flight waypoint, the /trajectory/contrail
endpoint returns raw contrail predictions, including optical fields. This endpoint could be used for satellite comparison.
The /trajectory/cocip-contrail
endpoint supports both single flight and fleet computation. See Fleet Computation for getting started with fleet computation.
This notebook demonstrates basic usage of this endpoint.
[1]:
import os
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import requests
[2]:
# Define credentials
URL = os.environ["API_URL_BASE"] # https://api.contrails.org/v0
api_key = os.environ["CONTRAILS_API_KEY"] # put in your API key here
headers = {"x-api-key": api_key}
[3]:
# Create synthetic flight
n_waypoints = 200
t0 = "2022-09-21T15:00:00"
t1 = "2022-09-21T19:00:00"
fl = pd.DataFrame()
fl["longitude"] = np.linspace(10, 15, n_waypoints)
fl["latitude"] = np.linspace(35, 65, n_waypoints)
fl["altitude"] = 37000.0
fl["time"] = pd.date_range(t0, t1, periods=n_waypoints).astype(int) // 1_000_000_000
Post a flight to the /trajectory/cocip-contrail
endpoint¶
The response contains a contrail
field, which holds all of the intermediate contrail predictions. Like all other /trajectory
response models, the contrail
data is a list whose items are in one-to-one correspondence with waypoints in the trajectory payload. For example, the 67th element of this contrail list holds contrail evolution data for the 67th waypoint of the flight posted to the endpoint.
[4]:
payload = fl.to_dict("list") | {"aircraft_type": "A321"}
r = requests.post(f"{URL}/trajectory/cocip-contrail", json=payload, headers=headers)
print(f"HTTP Response Code: {r.status_code} {r.reason}")
r_json = r.json()
HTTP Response Code: 200 OK
[5]:
# Convert contrail data in response to a pd.DataFrame
contrail = pd.concat([pd.DataFrame(c) for c in r_json["contrail"]])
# The time field has the same format as the request time.
contrail["time"] = pd.to_datetime(contrail["time"], unit="s")
contrail.head(5)
[5]:
longitude | latitude | altitude | time | tau_cirrus | tau_contrail | rf_sw | rf_lw | width | depth | segment_length | n_ice_per_m | r_ice_vol | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 13.742 | 57.458 | 36906.0 | 2022-09-21 18:00:00 | 0.0000 | 0.0546 | 0.0 | 0.453 | 54.0 | 57.0 | 0.0 | 2.830000e+12 | 3.860000e-07 |
0 | 13.858 | 58.168 | 36890.0 | 2022-09-21 18:10:00 | 0.0008 | 0.0419 | 0.0 | 0.468 | 179.0 | 76.0 | 18495.0 | 2.578000e+12 | 5.700000e-07 |
0 | 13.888 | 58.334 | 36893.0 | 2022-09-21 18:10:00 | 0.0006 | 0.0796 | 0.0 | 1.176 | 146.0 | 72.0 | 18361.0 | 2.657000e+12 | 7.930000e-07 |
1 | 13.866 | 58.226 | 36870.0 | 2022-09-21 18:20:00 | 0.0020 | 0.0185 | 0.0 | 0.238 | 511.0 | 102.0 | 18856.0 | 2.495000e+12 | 6.650000e-07 |
0 | 13.917 | 58.498 | 36896.0 | 2022-09-21 18:10:00 | 0.0000 | 0.1123 | 0.0 | 1.787 | 108.0 | 68.0 | 18248.0 | 2.729000e+12 | 8.900000e-07 |
[6]:
# Visualize the predictions
fig, ax = plt.subplots(figsize=(10, 6))
fl_filt = fl[fl["latitude"].between(55, 63)]
fl_filt.plot(
x="longitude",
y="latitude",
ax=ax,
lw=1,
color="red",
label="flight trajectory",
)
contrail.plot.scatter(
x="longitude",
y="latitude",
c="rf_lw",
alpha=(10 * contrail["tau_contrail"]).clip(upper=1),
s=contrail["width"] / 1000,
ax=ax,
)
ax.set_title("Contrail evolution");
Post a fleet to the /trajectory/cocip-contrail
endpoint¶
We visualize predicted the contrail evolution for a synthetic fleet.
The fleet itself is constructed by perturbing the synthetic flight fl
.
Warning. The
/trajectory/cocip-contrail
response are often much larger than the responses on other endpoints. This is exacerbated when posting a fleet.
[7]:
# Construct synthetic fleet with 50 flights
rng = np.random.default_rng(5772156)
fls = []
for fl_id in range(50):
lon0, lon1, lat0, lat1 = rng.uniform(-5, 5, 4)
fl_perturb = fl.copy()
fl_perturb["longitude"] += np.linspace(lon0, lon1, len(fl_perturb))
fl_perturb["latitude"] += np.linspace(lat0, lat1, len(fl_perturb))
fl_perturb["flight_id"] = f"{fl_id:2d}"
fl_perturb["time"] += rng.integers(0, 7200)
fl_perturb["altitude"] += rng.choice([-2000, 0, 2000])
fl_perturb["aircraft_type"] = rng.choice(["A320", "B737"])
fls.append(fl_perturb)
fleet = pd.concat(fls)
# Visualize our synthetic fleet
fleet.plot.scatter("longitude", "latitude", s=0.1, title="Synthetic fleet");
[8]:
payload = fleet.to_dict("list")
r = requests.post(f"{URL}/trajectory/cocip-contrail", json=payload, headers=headers)
print(f"HTTP Response Code: {r.status_code} {r.reason}")
r_json = r.json()
contrail = pd.concat([pd.DataFrame(c) for c in r_json["contrail"]])
contrail["time"] = pd.to_datetime(contrail["time"], unit="s")
HTTP Response Code: 200 OK
[9]:
# Visualize the predictions
from matplotlib.animation import FuncAnimation, PillowWriter
fleet = fleet.set_index(pd.to_datetime(fleet["time"], unit="s").dt.floor("1min"))
fig, ax = plt.subplots(figsize=(10, 6))
ax.set_xlim(8, 24)
ax.set_ylim(52, 66)
scat1 = ax.scatter([], [], s=2, color="red")
scat2 = ax.scatter([], [], c=[], vmin=0, vmax=20)
filt = (
contrail["longitude"].between(8, 24)
& contrail["latitude"].between(52, 66)
& contrail["time"].between("2022-09-21T18", "2022-09-22T01")
)
contrail_filt = contrail[filt]
frames = contrail_filt.groupby("time")
def animate(frame):
print(".", end="") # progress bar
time, group = frame
ax.set_title(time)
try:
scat1.set_offsets(fleet.loc[time, ["longitude", "latitude"]])
except KeyError:
scat1.set_offsets([[None, None]])
scat2.set_offsets(group[["longitude", "latitude"]])
scat2.set_alpha((3 * group["tau_contrail"]).clip(upper=1))
scat2.set_array(group["rf_lw"])
scat2.set_sizes(group["width"].clip(upper=20000) / 1000)
return scat1, scat2
plt.close()
ani = FuncAnimation(fig, animate, frames=frames)
ani.save("evo.gif", dpi=300, writer=PillowWriter(fps=2))
# Show the gif
from IPython.display import Image
with open("evo.gif", "rb") as f:
display(Image(data=f.read(), format="png"))
# Cleanup
os.remove("evo.gif")
............................................
[ ]: